1399-02-30
هوش مصنوعی چیست؟
هوش مصنوعى علمى است بسيار جوان و روبه رشد. شروع هوش مصنوعى به سال ۱۹۵۰ بازمى گردد يعنى زمانى كه آلن تورينگ مقاله خود را درباره ساخت ماشين هوشمند به رشته تحرير درآورد. در اين مقاله تورينگ روشى را براى تشخيص هوشمندى ماشين ها پيشنهاد داد. روش پيشنهادى تورينگ بيشتر شبيه به يك بازى بود بدين نحو كه يك انسان و يك ماشين روبروى هم و پشت پرده اى قرار مى گرفتند. ماشين بايد با طرح سؤالاتى از انسان او را وادار به پذيرش هوشمند بودن خود مى كرد. روش پيشنهادى تورينگ به شرح زير است: فرض كنيد كه انسانى در يك سمت ديوارى قرار دارد و توانايى برقرار كردن ارتباط به صورت تله تايپ با آن سوى ديگر ديوار را دارا باشد. مكالمه اى ميان دو نفر انجام مى شود اگر پس از پايان مكالمه به آن شخص گفته شود كه در طرف مقابلش نه يك انسان بلكه يك ماشين قرار داشته كه پاسخ او را مى داده است و اين امر بدون پى بردن شخص نسبت به هويت واقعى طرف مقابل انجام شود مى توان آن ماشين را ماشينى هوشمند قلمداد كرد.
نقطه آغاز علم هوش مصنوعى را مى توان به بعد از جنگ جهانى دوم نسبت داد، در آن زمان واينر با توجه به مسائل سايبرنتيك زمينه را براى پيشرفت هوش مصنوعى به وجود آورد و سپس در سال ۱۹۵۰ تورينگ آزمايش بالا را براى اثبات هوشمند بودن يك ماشين پيشنهاد داد و سپس در سال ۱۹۵۶ گروهى از علاقه مندان به هوش مصنوعى در كالج دارتموت گرد هم آمدند و تحقيقات وسيعى را براى هوش مصنوعى آغاز كردند. دهه ۱۹۶۰ را مى توان دهه توسعه و پيشرفت تحقيقات در زمينه هوش مصنوعى ناميد. در اين سال ها بود كه با تلاش هاى دانشمندان هوش مصنوعى، برنامه هاى بازى شطرنج و ربات هاى هوشمند پا به عرصه گذاشتند و پس از آن هر سال پله هاى پيشرفت و ترقى خود را پيمودند. هدف هوش مصنوعى همه افرادى كه نخستين گام ها را در راه معرفى و شناخت هوش مصنوعى برداشتند به دنبال يك هدف بودند و آن نيز رساندن سطح هوش مصنوعى به سطح هوش انسانى بود.
اما امروزه مى دانيم كه مطالعه و بررسى در زمينه هوش و درك مكانيزم آن بسيار پيچيده است، هم اكنون مى توان موضوع هوش را از دو ديدگاه متفاوت مورد بررسى قرار داد:
۱- آگاهى از جهان اطراف چگونه حاصل مى شود و چه طور مى توان از حقايق و كشفيات نتيجه گيرى هوشمندانه اى به عمل آورد؟ ۲- كشف و شهود آگاهانه به اين معنا كه براى رسيدن به هدفى مشخص هزاران راه و بيراهه وجود دارد كه با استفاده از هوش مصنوعى مى توان راه را از بيراهه تشخيص داد. تمایز هوش مصنوعى و هوش انسانى در شبكه ارتباطى مغز انسان سيگنال هاى ارتباطى به صورت پالس هاى الكتريكى وجود دارد. جزء اصلى مغز نرون است كه از ساختمانى سلولى و مجموعه اى از شيارها و خطوط به وجود مى آيد كه اين شيارها محل ورود اطلاعات به نرون هاست و خطوط نيز محل خروج اطلاعات از نرون است. محل اتصال نرون ها به يكديگر را سيناپس مى گويند كه مانند دروازه اى براى ورود و خروج اطلاعات (Data) عمل مى كند، اگر واكنش هاى نرون ها به پالس هاى متفاوت هماهنگى كامل داشته باشند اتفاق هاى مهمى در مغز انسان رخ داده است. گروهى از دانشمندان هوش مصنوعى كه رويكرد مدل مغزى را دنبال مى كنند، شكلى از مدارهاى الكترونيكى را طراحى كرده اند كه تاحدودى شبيه شبكه مغز انسان است ، در اين ساختار هر گروه به تنهايى خود يك پردازنده (CPU) است ولى رايانه هاى معمولى تنها توانايى داشتن بيش از چند CPU را به صورت هم زمان ندارند. هدف از راه اندازى اين شبكه عصبى رايانه اى طراحى مكانيسمى است كه مانند مغز انسان توانايى يادگيرى داشته باشد.
سامانه شبكه عصبى اين كار را از راه ارزش گذارى كمى براى ارتباطات سيگنال ها بين نرون ها انجام مى دهد كه اين مكانيسم ارزش گذارى به وسيله مقاومت ها با تقويت يا تضعيف پالس ها انجام مى شود. باتوجه به تعداد زياد نرون ها در شبكه عصبى خرابى تعدادى از آنها تأثير چندانى بر عملكرد سامانه ندارد تاكنون چند سيستم آزمايشى با استفاده از اين اصول طراحى و ساخته شده اند. ويژگى هاى هوش مصنوعى ماشين هايى كه به عنوان ماشين هاى هوشمند شناخته مى شوند توانايى فكر كردن بدون نياز به انسان را دارد و اين به دليل وجودخصلت هوش مصنوعى Artificial Intelligence دراين گونه ازماشين هاست. ماشين ها تنها در صورتى يك ماشين باهوش شناخته مى شوند كه داراى قابليت هاى خاصى باشد كه يكى از اين ويژگى ها شناخت از وجود خود است كه تاكنون ماشينى كه اين توانايى را به طور كامل داشته باشد به وجود نيامده است، ويژگى بعدى ماشين هاى هوشمند توانايى شناخت محيط پيرامون خود است كه اين امكان در برخى از ماشين هاى هوشمند امروزى كه با نام «ربات هاى امدادگر» شناخته مى شوند وجود دارد، ويژگى بعدى در ماشين هايى كه داراى هوش مصنوعى هستند توانايى نشان دادن عكس العمل در مقابل كنش هاى حاصل از محيط است كه اين امكان نيز در ربات هاى هوشمند امروزى و در دسته خاصى از آن ها باعنوان «ربات هاى كاوشگر» فراهم آمده است. كاربردهاى هوش مصنوعى از كاربردهاى هوش مصنوعى مى توان به موارد زير اشاره كرد
۱ـ طراحى نرم افزارهاى هوشمند: اين گروه از نرم افزارها براى انجام كارهاى تخصصى طراحى شده اند و داراى توانمندى هاى بالايى نيز هستند، پشتوانه اين گونه از برنامه ها وجود يك بانك اطلاعاتى (Data Base) قوى براى پاسخگويى به پرسش هاى مختلف كاربران است. نمونه هايى از اين گونه از نرم افزارها نيز، نرم افزارهايى است كه در آزمون هاى استخدامى و دانشگاهى مورد استفاده قرار مى گيرد. طراحى بازى هاى هوشمند: زمانى كه شما در حال انجام يك بازى رايانه اى هستيد،
2- دشمنان شما از هوش كافى برخوردارند. اگر شما به آن ها شليك كنيد آن ها اقدام به فرار كرده و يا با مقابله به سوى شما شليك خواهند كرد. اين فرآيند نيز به دليل وجود هوش مصنوعى در دشمنان شماست كه آن ها را به واكنش نسبت به شما برمى انگيزاند. ۳ـ طراحى ربات هاى هوشمند: كاربرد عمده ديگر هوش مصنوعى در طراحى ماشين ها به نسبت هوشمند است. ماشين هايى مانند ربات هاى كاوشگر و ربات هاى امدادگر. در ربات هاى امدادگر، ربات بايد در محدوده مورد نظر به دنبال مصدومان حادثه بگردد و پس از يافتن آن ها كمك هاى مورد نياز را در اختيار آن ها قرار دهد كه اين خود نياز به داشتن شناخت از محيط دارد. دسته ديگر ربات ها يعنى ربات هاى كاوش گر بايد به دنبال قطعه مورد نظر در مكانى خاص باشند و يا مسيرى را كه از پيش تعريف شده است دنبال كنند كه اين نيز نيازمند داشتن هوش مصنوعى در اين دسته از ربات ها است. نتيجه هوش مصنوعى هنوز راه درازى در پيش دارد، شبكه سازى عصبى كه در سال هاى گذشته شاهدتغييرات عمده اى نيز بوده است هر روز به دوران رشد و بلوغ خود نزديك تر مى شود. به عنوان مثال پژوهشگران پيش بينى مى كنند كه به كمك فناوى نرم افزارى جديد شبكه هاى عصبى بتوان پيش بينى هاى بسيار دقيقى از بازار سهام به عمل آورد و پيش بينى هاى دقيق ترى مانند مكان فيزيكى سياره ها درسال هاى آتى و اوضاع كره زمين از نظر شرايط زيست محيطى و غيره نيز ميسر خواهد شد. امروزه نگرش تاز ه اى نسبت به هوش مصنوعى به وجود آمده است كه در بسيارى از آزمايشگاه ها در حال بررسى است. پژوهشگران سعى مى كنند دريابند آيا مجموعه اى از ربات هاى نيمه هوشمند مى توانند يك هوش جمعى ايجاد كنند به نحوى كه هوش جمعى حاصل از هوش اعضاى تشكيل دهنده اين مجموعه بيشتر باشد؟ فلسفهٔ هوش مصنوعی بطور کلی ماهیت وجودی هوش به مفهوم جمع آوری اطلاعات، استقرا و تحلیل تجربیات به منظور رسیدن به دانش و یا ارایه تصمیم است. در واقع هوش به مفهوم به کارگیری تجربه به منظور حل مسائل دریافت شده تلقی میشود. هوش مصنوعی علم و مهندسی ایجاد ماشینهایی با هوش با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و یا حیوانی و نهایتاً دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی است. در مقایسه هوش مصنوعی با هوش انسانی میتوان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسایل در جهت قضاوت و اخذ تصمیم است در حالی که هوش مصنوعی مبتنی بر قوانین و رویههایی از قبل تعبیه شده بر روی کامپیوتر است. در نتیجه علی رغم وجود کامپیوترهای بسیار کارا و قوی در عصر حاضر ما هنوز قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوشهای مصنوعی نبودهایم. بطور کلّی، هوش مصنوعی را میتوان از زوایای متفاوتی مورد بررسی و مطالعه قرار داد. مابین هوش مصنوعی به عنوان یک هدف، هوش مصنوعی به عنوان یک رشته تحصیلی دانشگاهی، و یا هوش مصنوعی به عنوان مجموعهٔ فنون و راه کارهایی که توسط مراکز علمی مختلف و صنایع گوناگون تنظیم و توسعه یافتهاست باید تفاوت قائل بود. تکنیکها وزبانهای برنامه نویسی هوش مصنوعی عملکرد اولیه برنامه نویسی هوش مصنوعی ایجاد ساختار کنترلی مورد لزوم برای محاسبه سمبولیک است زبانهای برنامه نویسی LISP,PROLOG علاوه بر اینکه از مهمترین زبانهای مورد استفاده در هوش مصنوعی هستند خصوصیات نحوی ومعنایی انها باعث شده که انها شیوهها و راه حلهای قوی برای حل مسئله ارایه کنند. تاثیر قابل توجه این زبانها بر روی توسعه AI از جمله تواناییهای انها بعنوان «ابزارهای فکرکردن» است. در حقیقت همانطور که هوش مصنوعی مراحل رشد خود را طی میکند زبانهای LISP ,PROLOG بیشتر مطرح میشوند این زبانها کار خود را در محدوده توسعه سیستمهای AIدر صنعت ودانشگاهها دنبال میکنند و طبیعتاً اطلاعات در مورد این زبانها بعنوان بخشی از مهارت هر برنامه نویس AIاست. PROLOG یک زبان برنامه نویسی منطقی است. یک برنامه منطقی دارای یک سری ویژگیهای قانون ومنطق است.
در حقیقت خود این نام از برنامه نویسی PROدر LOGIC میآید. در این زبان یک مفسر برنامه را بر اساس یک منطق مینویسد.ایده استفاده توصیفی محاسبهٔ اولیه برای بیان خصوصیات حل مسئله یکی از محوریتهای مشارکت PROLOG است که برای علم کامپیوتر بطور کلی و بطور اخص برای زبان برنامه نویسی هوشمند مورد استفاده قرار میگیرند. LISP: اصولاً LISP یک زبان کامل است که دارای عملکردها و لیستهای لازمه برای توصیف عملکردهای جدید، تشخیص تناسب و ارزیابی معانی است. LISP به برنامه نویس قدرت کامل برای اتصال به ساختارهای اطلاعاتی را میدهد گر چه LISP یکی از قدیمیترین ترین زبانهای محاسباتی است که هنوز فعال است ولی دقت کافی در برنامه نویسی وطراحی توسعه باعث شده که این یک زبان برنامه نویسی فعال باقی بماند. در حقیقت این مدل برنامه نویسی طوری موثر بودهاست که تعدادی از دیگر زبانها براساس عملکرد برنامه نویسی آن بنا شدهاند: مثل FP ،ML ،SCHEME یکی از مهمترین برنامههای مرتبط با LISP برنامه SCHEME است که یک تفکر دوباره در باره زبان در آن وجود دارد که بوسیله توسعه AI وبرای آموزش واصول علم کامپیوتر مورد استفاده قرار میگیرد.
برق خورشیدی برای دوربین مداربسته
بزرگترین نیروگاه برق خورشیدی جهان
انرژی خورشیدی چگونه به برق تبدیل می شود
قیمت خرید تضمینی برق خورشیدی 98
قیمت خرید تضمینی برق خورشیدی 97
کلیه حقوق مادی و معنوی وبسایت محفوظ میباشد . هرگونه کپی برداری بدون ذکر منبع غیر قانونی میباشد.